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Efficient use of computa�onal resources

Topic of interest:
Current scope of computa�onal resources allows solving problems ofenormous size
Combina�on with efficient algorithms offers massive poten�al toincrease the accuracy of solu�on on large number of unknowns

Approaches presented in this talk:
Dynamic resolu�on with adap�ve methods

Focus computa�onal resources on areas of interest
Mul�-core architecture suggests paralleliza�on

Use mul�ple processors at once to solve problems
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Adap�ve methods

Focus computa�onal resources on areas of interest
Align simula�on resolu�on with complexity of current solu�on
Finite Element Method (FEM) provides two different possibili�es:
h-adapta�on: dynamic cell sizes good for irregular solu�ons
p-adapta�on: dynamic func�on spaces good for smooth solu�ons

Combina�on of both possible

Figure: h–adap�ve methods Figure: p–adap�ve methods
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Paralleliza�on

Current computer architectures provide mul�-core processors
Supercomputers arrange those on distributed nodes

Using all resources efficiently requires paralleliza�on
Distribu�on of workload and memory demand

Our approach: Distribu�on of domain on several processes
Each subdomain needs relevant part of the global solu�onRequires a layer of so called ghost cellsInvolves communica�on between processors

(a) Domain to be distributed
−→

(b) Subdomain for CPU 0 (c) Subdomain for CPU 1
Figure: Illustra�on of locally owned, ghost, and ar�ficial cells
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Parallel generic adap�ve methods in FEM

Combine both approaches to get parallel hp-adap�ve methods
Develop generic algorithm, applicable for any FEM so�ware

The non-trivial parts are:
1 Enumera�on of degrees of freedom (DoFs)
2 Data transfer across subdomains
3 Load balancing

Reference implementa�on in deal.II library [1]
See issue #3511 for development log
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Enumera�on of degrees of freedom

Numbering of DoFs necessary to build linear equa�on
Paralleliza�on and p-adap�ve methods require different algorithms

See parallel [2] and hp [3] papers for details
Combina�on of both algorithms not trivial

1 Local enumera�on of DoFs
2 Invalidate DoFs on ghost interfaces to processors with lower rank
3 Unifica�on of DoFs on local domain and ghost interfaces

Ownership of DoFs clarified
4 Global re-enumera�on of DoFs

Local DoF indices set
5 Exchange of locally owned DoFs
6 Merge DoFs on ghost interfaces

Global DoF indices set
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Enumera�on algorithm on paper

Figure: Final version of the enumera�on algorithm
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Data transfer across subdomains

On distributed triangula�ons, each subdomain needs access to relevantfrac�on of global quan��es
Changes on cell ownership requires transfer of these quan��es
With p-adap�ve methods, per cell data sizes may differ

Communica�on between involved processors required
Crea�on of memory buffers for fixed and variable size data

cell 1 cell 2 ...
callback 1 callback 2 ... callback 1 callback 2 ... ...... ... ... ... ... ...... ...

Figure: Division of con�guous memory chunk
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Data transfer

Treat fixed and variable size data separately
Each transfer algorithm op�mized for their specific taskPoten�ally slower variable size transfer will only be used when necessaryCompression possible with variable size transfer

We have con�guous memory chunks for data transfer duringrepar��oning, refinement/coarsening, serializa�on
Program may be resumed with a different number of processors

Data consignment independent of transfer algorithms used forrepar��oning, refinement/coarsening, serializa�on
Use non-blocking MPI communica�on for all opera�ons
deal.II u�lizes interface to p4est [4]
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Load balancing
p-adap�vity yields differing workload between cells
Weighted repar��oning achieves balanced load per processor
Factors that determine workload:

Cell construc�onMatrix & right-hand-side assemblyType of solver
Correla�on to number of DoFs, quadrature formula, ...
How to find a suitable es�mate for a cell’s workload?

Open ques�on

Q14 DoFs Q29 DoFs Q316 DoFs Q425 DoFs ...

Figure: Different finite elements and their number of degrees of freedom in 2D
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Dynamic hp-adap�ve methods
At this stage, parallel hp-FEM on sta�c meshes possible
Dynamic strategies required for successive adapta�on
Variety of hp-adap�ve strategies reviewed by Mitchell [5]

1 Refinement history
2 Smoothness es�ma�on

Selec�on implemented in deal.II library [1]
See issue #7515 for development log

GENERATE
SETUP ASSEMBLE SOLVE ESTIMATE MARK DECIDE REFINE

WRITE
Figure: Enhanced SOLVE-ESTIMATE-MARK-REFINE cycle
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Mark cells for adapta�on

Determine sensi�ve areas of solu�on where resolu�on shall be adapted
For this, assess a posteriori error es�mates as indicators for adapta�on

1 Es�mate errors on all cells
Es�mator by Kelly et al. [6] for Laplace equa�on: −∇ · (a∇u) = fProved as reasonable indicator for other scenarios as wellImplemented in deal.II as KellyErrorEstimator
‖∇ (u−uh)‖2H1(Ω) ≤ C∑

K
η2K, η2K =

∑
F∈∂K

cF
∫
∂KF

[
a∂uh
∂n
]2 do, cF =

hF2pF
2 Mark cells for adapta�on

Most prominent strategies
fixed number: controls growth of mesh size
fixed frac�on: controls reduc�on of error es�mates
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A priori error predic�on

Error behavior for hp-FEM is well understood [5]
Algebraic convergence rate with h-adapta�on

‖∇ (u−uhp)‖H1(Ω) ≤ C hµ
pm−1 ‖u‖Hm(Ω), µ=min (p,m−1) , C dependent on m

Exponen�al convergence rate with p- or hp-adapta�on
Requires solu�on to be sufficiently regular

‖∇ (u−uhp)‖H1(Ω) ≤ C exp
(
−bN1/3dofs

)
, C, b>0 independent of Ndofs

Refinement history
Predict and verify error of solu�on during hp-adapta�on process
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Refinement history
Verify predic�on’s accuracy
Decide on either h- or p-adapta�onon marked cells

Keep h fine: ηK > ηK,predKeep p large: ηK ≤ ηK,pred Figure: h-adapta�on

Figure: Error predic�on algorithm based on Melenk and Wohlmuth [7]
Adapta�on type Predic�on formula
no adapta�on ηK,pred = ηK γn γn ∈ (0,∞)

p-adapta�on ηK,pred = ηK γ(pK,future−pK)p γp ∈ (0, 1)
h-refinement ηKc,pred = ηK γh 0.5pK 0.5dim γh ∈ (0,∞)

h-coarsening ηK,pred =
∑
Kc
ηKc/(γh 0.5pKc ) ∀Kc children of K

Member of the Helmholtz Associa�on November 29, 2019 Slide 14



Smoothness es�ma�on

Decay of series expansion coefficients for indica�ng smoothness
Legendre series expansion as presented by Mavriplis [8]

Evaluate exponen�al decay of Legendre coefficients ai ∼ C e−σ i
Convergence rates σ> 1 indicate good grid resolu�on (keep h fine)

Fourier series expansion as presented in step-27

Mapped solu�on û(x̂) inHµ−dim/2 when Fourier coefficients Ûk decay as
∣∣Ûk
∣∣ =

∣∣∣∣∫K̂ exp (i k · x̂) û(x̂) dx̂
∣∣∣∣ = O

(
|k|−µ−ε

)
Use convergence rates µ as smoothness indicators and compare them torela�ve thresholds (step-27) . . .
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Example: Reentrant corner

Domain with reentrant corner
Ω =

{
(r, ϕ) : 0 ≤ r ∧ 0 ≤ ϕ ≤ π

α

}
Laplace problem has a solu�on
−∇2u = 0

ū = rα sin (αϕ)

with singularity for α∈( 12 , 1)
We pick α= 23 and solve on
Ω = [−1, 1]2 \ ([0, 1]×[−1,0]) Figure: L-shaped domain
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Example: Comparison of decision strategies

(a) Fourier coefficient decay (b) Legendre coefficient decay (c) Refinement history
Figure: Mesh and polynomial degrees of finite elements a�er 4 consecu�vehp-adapta�ons.
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Example: Comparison of refinement types

103.4 103.6 103.8 104 104.2 104.4 104.6

10−5

10−4

Number of degrees of freedom

L2e
rror

noneh onlyp onlyhp Fourierhp Legendrehp predic�on

Figure: Error convergence for different strategies (n glob refs=4, p init=2)Results for hp Legendre not sa�sfactory→ inves�gate!
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Example: Scaling

39,800 63,100 100,000 158,000 251,000 398,000 631,000

0.01

0.1

1

Number of degrees of freedom

Wa
ll�m

e[s
eco

nds
]

setupassemblysolvees�mate errorflag adapta�ones�mate smoothnessflag prefinecompute errorswrite

Figure: Weak scaling for Fourier decay strategy (PETSc, n procs=136, p=2,3,4,5,6)Results for assembly not sa�sfactory→ inves�gate!
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Summary & Outlook

New algorithm for massively parallel hp-adap�ve methods, generallyapplicable for any FEM so�ware
Reference implementa�on in deal.II involves:

Enumera�on of degrees of freedom, independent of number ofsubdomainsConsignment of con�guous memory chunks for data transferWeighted repar��oning for load balancingSelec�on of adapta�on strategies for hp-FEM

Future steps:
Heuris�c analysis on reasonable cell weightsProvide tutorials in deal.II as a manual for a broader audience
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